Lesson 11. Introduction to Matrices

1 Overview

- Last time: models with six variables and six equations
- What if we have a model with hundreds of variables and equations? Thousands?
- Matrix algebra enables us to handle large systems of linear equations in a concise way
- Important for equilibrium analysis (a.k.a. comparative statics), econometrics, optimization
- Some types of nonlinear systems can be transformed into or approximated by systems of linear equations

2 What is a matrix?

- A matrix is a rectangular array of numbers, symbols, or expressions
- For example:

$$
A=\left[\begin{array}{ccc}
6 & 3 & 1 \\
1 & 4 & -2 \\
4 & -1 & 5
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad c=\left[\begin{array}{lll}
22 & 12 & 10
\end{array}\right]
$$

- The individual items in a matrix are called its elements (or entries)
- By convention:

$$
\begin{aligned}
A_{i j} & =\text { the element in the } i \text { th row and } j \text { th column of matrix } A \\
& =\text { "the } i j \text { element of } A \text { " }
\end{aligned}
$$

- The dimension (or size) of a matrix with m rows and n columns is $m \times n$ (" m by n ")
- "Row then column!"

Example 1.

a. What is the dimension of A ? x ? c ?
b. What is A_{23} ? A_{32} ? c_{12} ?

- A row vector is a matrix with only one row
- A column vector is a matrix with only one column

3 Matrix equality, addition and subtraction

- Two matrices are equal if and only if
- they have the same dimension
- their corresponding elements are identical
\diamond i.e. the $i j$ element of one matrix is equal to the $i j$ element of the other
- For example:

$$
\left[\begin{array}{ll}
4 & 3 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
4 & 3 \\
2 & 0
\end{array}\right] \neq\left[\begin{array}{ll}
2 & 0 \\
4 & 3
\end{array}\right]
$$

- When we add two matrices of the same dimension, we get another matrix of the same dimension
- We add two matrices by adding their corresponding elements
- We subtract two matrices by subtracting their corresponding elements

Example 2. Compute the following.
a. $\left[\begin{array}{ll}4 & 9 \\ 2 & 1\end{array}\right]-\left[\begin{array}{ll}2 & 0 \\ 0 & 7\end{array}\right]=$
b. $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]+\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32}\end{array}\right]=$

- Note: you cannot add or subtract two matrices of different dimension!

4 Scalar multiplication

- When we multiply a matrix by a scalar (a number), we get another matrix of the same dimension
- We multiply a matrix by a scalar by multiplying each element of the matrix by the scalar

Example 3. Find the following products.
a. $7\left[\begin{array}{cc}3 & -1 \\ 0 & 5\end{array}\right]=$

b. $-1\left[\begin{array}{lll}a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2}\end{array}\right]=$

5 Multiplying vectors: the dot product

- The dot product of vectors $u=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ and $v=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ is
- The dot product is well-defined only when u and v have the same number of elements
- u and v can be row or column vectors

6 Matrix multiplication

- How do we multiply two matrices together?
- Let A be an $m \times n$ matrix, and let B be an $n \times p$ matrix
- Note: $(\#$ columns of $A)=(\#$ rows of $B)$

Example 4. Quick check: What does the i th row of A look like? What does the j th column of B look like?

- The product $A B$ is an $m \times p$ matrix
- To get the $i j$ element of $A B$:
- We take the i th row of A and j th column of B
- Multiply corresponding their elements and add it all up:
- In other words, the $i j$ element of $A B$ is the dot product of the i th row of A and the j th column of B

Example 5. Let

$$
A=\left[\begin{array}{ccc}
6 & -5 & 1 \\
1 & 0 & 4
\end{array}\right] \quad B=\left[\begin{array}{cc}
4 & -1 \\
5 & 2 \\
0 & 1
\end{array}\right]
$$

a. What is the dimension of $A B$? What is the dimension of $B A$?
b. Find $A B$ and $B A$.

- Note: order of multiplication matters! Usually, $A B \neq B A$

Example 6. Give two matrices A and B such that $A B$ is not well-defined.

- If A is an $n \times n$ matrix and k is a positive integer, then A^{k} is defined as:
\square
- If $v=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$ is a $1 \times n$ row vector and $w=\left[\begin{array}{c}w_{1} \\ w_{2} \\ \vdots \\ w_{n}\end{array}\right]$ is a $n \times 1$ column vector, then:

7 Matrices act like scalars under addition

- $A-B=A+(-B)$
- Commutative law. For any two matrices A, B :
- Associative law. For any three matrices A, B, C :

8 Matrices don't always act like scalars under multiplication

- As we saw in Example 5, matrix multiplicative is not commutative: $A B \neq B A$
- Since order matters in multiplication, we have terminology that specifies the order
- In the product $A B$:
- B is premultiplied by A
- A is postmultiplied by B
- Associative law. For any three matrices A, B, C :
\square
- Distributive law. For any three matrices A, B, C :
\square

9 With your neighbor
Example 7. Let

$$
A=\left[\begin{array}{ll}
3 & 6 \\
4 & 2
\end{array}\right] \quad B=\left[\begin{array}{cc}
-4 & 0 \\
2 & 5
\end{array}\right] \quad C=\left[\begin{array}{ccc}
4 & -1 & 3 \\
0 & 6 & 2
\end{array}\right]
$$

Compute $A C, B C$ and $(B+A) C$.

Example 8. Compute the following:
a. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 3\end{array}\right]=$
b. $\left[\begin{array}{ccc}3 & -2 & 4 \\ -9 & 8 & 7\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=$

Example 9. Compute the following:
a. $\left[\begin{array}{ccc}-2 & 4 & 1 \\ 8 & 6 & 2\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]=$
b. $\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}-2 & 4 \\ 1 & -2\end{array}\right]=$

Example 10. Let

$$
C=\left[\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right] \quad D=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \quad E=\left[\begin{array}{cc}
-2 & 1 \\
3 & 2
\end{array}\right]
$$

Find $C D$ and $C E$.

10 Identity matrices

- An identity matrix is a square matrix with 1 s in its principal diagonal (northwest to southeast) and 0 s everywhere else:

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- I_{n} is the $n \times n$ identity matrix
- What happened in Example 8?
- The identity matrix plays the role that " 1 " has with scalars
- For any matrix A, we have
- What is $\left(I_{n}\right)^{2}=\left(I_{n}\right)\left(I_{n}\right)$? How about $\left(I_{n}\right)^{k}$ for any integer $k \geq 1$?

11 Null matrices

- A null matrix (or zero matrix) is a matrix whose elements are all 0
- A null matrix is not restricted to being square
- It's important to keep track of a null matrix's dimension
- We denote a null matrix by 0 :

$$
\underset{(2 \times 2)}{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad \underset{(2 \times 3)}{0}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- What happened in Example 9a?
- The null matrix plays the role that " 0 " has with scalars
- For any matrix A, we have:

12 Matrix algebra can be weird

- Unlike algebra with scalars, $A B=0$ does not necessarily imply either $A=0$ or $B=0$
- To illustrate, recall Example 9b
- Also unlike algebra with scalars, $C D=C E$ does not necessarily imply $D=E$
- To illustrate, recall Example 10

13 The transpose of a matrix

- Let A be an $m \times n$ matrix
- The transpose of A is denoted by A^{T}
- A^{T} has dimension $n \times m$
- The columns of A are the rows of A^{T}
- Similarly, the rows of A are the columns of A^{T}

Example 11. Let

$$
A=\left[\begin{array}{ccc}
3 & 8 & -9 \\
1 & 0 & 4
\end{array}\right] \quad B=\left[\begin{array}{lll}
2 & 0 & 3 \\
0 & 9 & 7 \\
3 & 7 & 1
\end{array}\right]
$$

Find A^{T} and B^{T}.

- A matrix B is symmetric if $B=B^{T}$
- What are some examples of symmetric matrices?
- Properties of transposes:
- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(A B)^{T}=B^{T} A^{T}$

Example 12. Let A and B the same matrices as in Example 5 on page 3. Find $B^{T} A^{T}$.

