Lesson 11. Introduction to Matrices

1 Overview

- Last time: models with six variables and six equations
- What if we have a model with hundreds of variables and equations? Thousands?
- Matrix algebra enables us to handle large systems of linear equations in a concise way
 - Important for equilibrium analysis (a.k.a. comparative statics), econometrics, optimization
 - Some types of nonlinear systems can be transformed into or approximated by systems of linear equations

2 What is a matrix?

- A matrix is a rectangular array of numbers, symbols, or expressions
- For example:

$$A = \begin{bmatrix} 6 & 3 & 1 \\ 1 & 4 & -2 \\ 4 & -1 & 5 \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad c = \begin{bmatrix} 22 & 12 & 10 \end{bmatrix}$$

- The individual items in a matrix are called its elements (or entries)
- By convention:

A_{ij} = the element in the *i*th row and *j*th column of matrix A
= "the *ij* element of A"

- The dimension (or size) of a matrix with *m* rows and *n* columns is $m \times n$ ("*m* by *n*")
- "Row then column!"

Example 1.

- a. What is the dimension of *A*? *x*? *c*?
- b. What is A_{23} ? A_{32} ? c_{12} ?

- A **row vector** is a matrix with only one row
- A column vector is a matrix with only one column

3 Matrix equality, addition and subtraction

- Two matrices are equal if and only if
 - they have the same dimension
 - their corresponding elements are identical
 - ◇ i.e. the *ij* element of one matrix is equal to the *ij* element of the other
- For example:

$$\begin{bmatrix} 4 & 3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 2 & 0 \end{bmatrix} \neq \begin{bmatrix} 2 & 0 \\ 4 & 3 \end{bmatrix}$$

- When we add two matrices of the same dimension, we get another matrix of the same dimension
- We add two matrices by adding their corresponding elements
- We subtract two matrices by subtracting their corresponding elements

Example 2. Compute the following.

a.
$$\begin{bmatrix} 4 & 9 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix} =$$

b. $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} =$

• Note: you cannot add or subtract two matrices of different dimension!

4 Scalar multiplication

- When we multiply a matrix by a scalar (a number), we get another matrix of the same dimension
- We multiply a matrix by a scalar by multiplying each element of the matrix by the scalar

Example 3. Find the following products.

a.
$$7\begin{bmatrix} 3 & -1\\ 0 & 5 \end{bmatrix} =$$

b. $-1\begin{bmatrix} a_{11} & a_{12} & b_1\\ a_{21} & a_{22} & b_2 \end{bmatrix} =$

5 Multiplying vectors: the dot product

- The **dot product** of vectors $u = [u_1, u_2, \dots, u_n]$ and $v = [v_1, v_2, \dots, v_n]$ is
- The dot product is well-defined only when *u* and *v* have the same number of elements
- *u* and *v* can be row or column vectors

6 Matrix multiplication

- How do we multiply two matrices together?
- Let *A* be an $m \times n$ matrix, and let *B* be an $n \times p$ matrix
 - Note: (# columns of A) = (# rows of B)

Example 4. Quick check: What does the *i*th row of *A* look like? What does the *j*th column of *B* look like?

- The product *AB* is an $m \times p$ matrix
- To get the *ij* element of *AB*:
 - We take the *i*th row of A and *j*th column of B
 - Multiply corresponding their elements and add it all up:
- In other words, the *ij* element of *AB* is the dot product of the *i*th row of *A* and the *j*th column of *B*

Example 5. Let

$$A = \begin{bmatrix} 6 & -5 & 1 \\ 1 & 0 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & -1 \\ 5 & 2 \\ 0 & 1 \end{bmatrix}$$

a. What is the dimension of *AB*? What is the dimension of *BA*?

b. Find *AB* and *BA*.

• Note: order of multiplication matters! Usually, $AB \neq BA$

Example 6. Give two matrices *A* and *B* such that *AB* is not well-defined.

• If *A* is an $n \times n$ matrix and *k* is a positive integer, then A^k is defined as:

• If $v = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ is a $1 \times n$ row vector	and $w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$	is a $n \times 1$ column vector, then:

7 Matrices act like scalars under addition

- A-B=A+(-B)
- **Commutative law.** For any two matrices *A*, *B*:
- Associative law. For any three matrices *A*, *B*, *C*:

8 Matrices don't always act like scalars under multiplication

- As we saw in Example 5, matrix multiplicative is not commutative: $AB \neq BA$
- Since order matters in multiplication, we have terminology that specifies the order

- In the product *AB*:
 - $\circ B$ is **premultiplied** by A
 - A is **postmultiplied** by B
- Associative law. For any three matrices *A*, *B*, *C*:
- **Distributive law.** For any three matrices *A*, *B*, *C*:

9 With your neighbor

Example 7. Let

$$A = \begin{bmatrix} 3 & 6 \\ 4 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} -4 & 0 \\ 2 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 6 & 2 \end{bmatrix}$$

Compute AC, BC and (B + A)C.

Example 8. Compute the following:

a.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 3 \end{bmatrix} =$$

b. $\begin{bmatrix} 3 & -2 & 4 \\ -9 & 8 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$

Example 9. Compute the following:

a.
$$\begin{bmatrix} -2 & 4 & 1 \\ 8 & 6 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} =$$

b.
$$\begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} =$$

Example 10. Let

$$C = \begin{bmatrix} 2 & 3 \\ 6 & 9 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \qquad E = \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix}$$

Find *CD* and *CE*.

10 Identity matrices

• An **identity matrix** is a <u>square</u> matrix with 1s in its principal diagonal (northwest to southeast) and 0s everywhere else:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- I_n is the $n \times n$ identity matrix
- What happened in Example 8?
- The identity matrix plays the role that "1" has with scalars
- For any matrix *A*, we have
- What is $(I_n)^2 = (I_n)(I_n)$? How about $(I_n)^k$ for any integer $k \ge 1$?

11 Null matrices

- A null matrix (or zero matrix) is a matrix whose elements are all 0
- A null matrix is not restricted to being square
 - It's important to keep track of a null matrix's dimension
- We denote a null matrix by 0:

$$\begin{array}{c} 0 \\ (2 \times 2) \end{array} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{array}{c} 0 \\ (2 \times 3) \end{array} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- What happened in Example 9a?
- The null matrix plays the role that "0" has with scalars
- For any matrix *A*, we have:

12 Matrix algebra can be weird

- Unlike algebra with scalars, AB = 0 does not necessarily imply either A = 0 or B = 0
 - To illustrate, recall Example 9b
- Also unlike algebra with scalars, CD = CE does not necessarily imply D = E
 - To illustrate, recall Example 10

13 The transpose of a matrix

- Let *A* be an $m \times n$ matrix
- The **transpose** of *A* is denoted by A^T
 - A^T has dimension $n \times m$
 - The columns of *A* are the rows of A^T
 - Similarly, the rows of *A* are the columns of A^T

Example 11. Let

$$A = \begin{bmatrix} 3 & 8 & -9 \\ 1 & 0 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 9 & 7 \\ 3 & 7 & 1 \end{bmatrix}$$

Find A^T and B^T .

- A matrix *B* is symmetric if $B = B^T$
 - What are some examples of symmetric matrices?
- Properties of transposes:
 - $\circ (A^T)^T = A$ $\circ (A + B)^T = A^T + B^T$ $\circ (AB)^T = B^T A^T$

Example 12. Let *A* and *B* the same matrices as in Example 5 on page 3. Find $B^T A^T$.